
JOURNAL OF COMPUTATIONAL. PHYSICS 106,258-268 (1993)

A Fast Recursive Algorithm for Molecular Dynamics Simulation

A. JAIN

Jet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109

N. VAIDEHI

A. A. Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125

AND

G. RODRIGUEZ

Jet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109

Received December 16, 1991

In this paper, we develop a recursive algorithm for solving the
dynamical equations of motion for molecular systems. We make use
of internal variable models which have been shown to reduce the
computation times of molecular dynamics simulations by an order
of magnitude when compared with Cartesian models. The O(.N)
algorithm described in this paper for solving the equations of motion
provides additional significant improvements in computational speed.
We make extensive use of the spatial operator methods which have
been developed recently for the analysis and simulation of the dynamics
of multibody systems. The spatial operators are used to derive the equa-
tions of motion and obtain an operator expression for the system mass
matrix. An alternative square factorization of the mass matrix leads to a
closed form expression for its inverse. From this follows the recursive
algorithm for computing the generalized accelerations. The computa-
tional cost of this algorithm grows only linearly with the number of
degrees of freedom. This is in contrast to conventional constrained
dynamics algorithms whose cost is a cubic function of the number of
degrees of freedom. For the case of a polypeptide molecule with 400
residues, the O(N) algorithm provides computational speedup by a
factor of 450 over the conventional O(.N3) algorithm. We also describe
a simplified method for computing and handling the potential function
gradients within the dynamics computations. 0 1993 Academic PMS, h.

1. INTRODUCTION

Molecular dynamics (MD) simulations are being used
increasingly to model structure-function relationships of
chemical reactivity of macromolecules and to study the
structural evolution of proteins, nucleic acids, and other
polymers [l-3]. However, large computational times are a
significant limiting factor on the time-scales over which MD
simulations are currently feasible. Reference [4] contains
an overview of some of the literature on the development

of dynamics models and computational techniques for
molecular systems.

The Cartesian model for molecular systems is widely used
due to its simplicity and ease of application [3, 5, 61. In this
model, all the atoms in the system are treated as free par-
ticles and their accelerations are computed independently
using Newton’s law. Thus, the equations of motion for this
model are highly decoupled.

Hard constraints on bonds are often used to eliminate
from molecular models lightly excited degrees of freedom
(e.g., inter-atomic oscillations, rotations about double
bonds) and those that have insignificant effect on long time-
scale processes such as conformational changes in macro-
molecules [4,7-121. This is particularly important for high-
frequency degrees of freedom since they force the use of
small integration step-sizes which severely limit the time-
scales for MD simulations. While constrained models may
be unsuitable for studying transition states during chemical
reactions, models with varying levels of constraints can be
very useful for large time simulations.

With the addition of constraints, the equations of motion
for the Cartesian model are no longer ordinary differential
equations (ODES), but are instead more complex differen-
tial-algebraic equations (DAEs). The SHAKE algorithm is
widely used to handle these inter-atomic constraints [6]. In
this algorithm, the “unconstrained” ODE component of the
equations of motion is used to compute an initial estimate
of the change in the conformational state of the system.
This estimate is modified iteratively until it satisfies the
constraints to within acceptable error limits.

An alternative approach, for molecular models with
constraints, is to use internal coordinates to directly incor-
porate the constraints into the dynamical model [4,9, 101.

0021-9991/93 S5.00
Copyright 0 1993 by Academic Press, Inc.
AII rights of reproduction in any form raerved.

258

A FAST ALGORITHM FOR MD SIMULATION 259

In such internal variable models, the number of generalized
coordinates for the molecular system is smaller than in
the corresponding Cartesian models. The internal variable
model we describe and use in this paper consists of rigid
subunits of atoms-referred to as clusters-whose relative
motion is described by the internal coordinates. We limit
our attention here to tree-topology (branched) molecular
models, that is, models in which the clusters do not form
any closed loops. Individual clusters can, however, contain
closed loops formed by atoms. For tree-topology molecular
models, the generalized coordinates are of minimum dimen-
sion and the equations of motion are ODES rather than the
DAEs obtained using Cartesian models. The integration of
the equations of motion is thus considerably simpler.

The equations of motion for an internal variable model
for a tree-topology molecular system with Jf degrees of
freedom can be expressed as follows:

A!(bg + qe, 8) = T(8). (1.1)

Here 8 denotes the N-dimensional vector of generalized
coordinates, T is the X-dimensional vector of generalized
forces, Jt? is the JV x JV” symmetric and positive definite
mass matrix, and V is the &-dimensional vector of Coriolis
and other (velocity dependent) nonlinear forces. While the
dimension of the mass matrix J? is less than that for the
Cartesian model, it is no longer diagonal, and it also
depends nonlinearly upon 13. Lagrangian analysis has been
used to derive expressions for the components of J? and G$
in [4,9, lo]. The dynamics algorithm in [101 for computing
the acceleration vector 8 consists of computing A, %?, and
T explicitly and then solving the linear matrix equation in
Eq. (1.1). Due to the coupled structure of A, the computa-
tional cost of this step is typically a cubic function of J”. The
cost of this O(JV’) algorithm increases rapidly for large
molecules. Even though an order of magnitude reduction in
computational time is achieved compared to the conven-
tional Cartesian model, the sharp increase in computational
cost as molecular size increases is a major limiting factor for
the internal variables approach.

In this paper we describe a fast recursive algorithm for
solving the equations of motion for internal variable
molecular models. The computational cost of this algorithm
is a linear function of the number of degrees of freedom.
Thus, computation times are significantly reduced. The
algorithm does not require either the explicit computation
of the mass matrix JSY or the explicit solution of the linear
matrix equation in Eq. (1.1). It also provides a simplified
method for computing the forces arising from the potential
functions by eliminating the need to compute the gradient of
the Cartesian potential functions with respect to the internal
variables.

The algorithm is based on the recently developed spatial
operator algebra which has been used for the analysis
and high-speed simulation of the dynamics of complex

multibody systems such as robots, spacecraft, and vehicles
[13, 141. This methodology uses spatial operators to
concisely derive the equations of motion, to reduce the
complexity of dynamics models, and to develop fast
recursive computational algorithms. We include here for
completeness the relevant aspects of the formulation and
derivation of the algorithm and refer the reader to the above
references for additional details. The spatial operator
algebra algorithms are very similar to those used in the
well-studied areas of Kalman filtering and smoothing [151.
Thus, a substantial body of knowledge exists about issues
such as numerical stability and software architectures.
Extensions of the algorithm to closed-topology molecular
models, i.e., models containing clusters in closed loops, are
straightforward [141.

2. DYNAMICAL MODELS FOR MOLECULAR
SYSTEMS

All methods for simulating the dynamics of molecular
systems require two major computational steps: (i) the
computation of forces for the current conformational state
of the molecule; (ii) the solution of the equations of motion
and their subsequent integration for the calculation of the
trajectories.

The forces of interaction between atoms in a molecule are
typically described by means of potential functions. The
potentials are classified as being due to bonding or non-
bonding interactions. The bond potential is classically taken
to be a quadratic, harmonic, or a Morse-type potential. The
non-bonded interactions include van der Waal attraction,
electrostatic interaction, dipole-dipole interaction, and dis-
persion forces [3,6]. Several levels of quantum mechanical
calculations of the potential energy surface are available
[16181. The expression for the potential function PE can
be written as the combination of a function of Cartesian
coordinates, P[x], and another function of internal
coordinates, B [01, as

PE=s[O] +S[x].

The gradients of S[x] and S[&J are used to calculate the
inter-atomic forces required for solving the equations of
motion.

The free atom Cartesian model for molecules constitutes
the simplest of possible dynamics models with each atom
regarded as an unconstrained point mass particle. Let n
denote the number of atoms in the molecular model. Once
the 3n-dimensional vector of inter-atomic forces f is
computed, the acceleration of each atom is obtained using
Newton’s law. The equations of motion for the atoms in the
Cartesian model can be written in matrix form as

d&ji=f, (2.1)

260 JAIN, VAIDEHI, AND RODRIGUEZ

where the mass matrix J& is a 3n x 3n diagonal matrix
whose diagonal elements are the masses of the atoms, while
x E %” is the vector of Cartesian coordinates of the atoms.

In order to increase integration step size, hard constraints
are often imposed on the lightly excited degrees of freedom
in the molecular model. Assuming that there are m such
constraints, they can be expressed as instantaneous linear
constraints on the atomic velocities as

AR=B. (2.2)

Here A E %“’ x 3n denotes the constraint matrix and B E 91m is
the constraint vector and in general they both depend upon
the configuration of the molecule. Solving for the accelera-
tions, ji, requires the solution of Eq. (2.1) subject to the
constraint defined by Eq. (2.2). Due to the constraints, the
equations of motion are now no longer ODES but are
instead the more complicated DAEs. The computation of
the accelerations ji can be carried out using iterative
methods such as the SHAKE algorithm [6] or by using
Lagrange multipliers.

An alternative approach for handling constraints is to use
Eq. (2.2) to numerically eliminate some of the components
off from Eq. (2.1) to obtain a generalized velocity vector i,
of minimal dimension JV 4 3n - m. M represents the num-
ber of degrees of freedom remaining in the molecular model
after the imposition of the constraints. This results in a
dimensionally reduced form of the equations of motion:

.4&-i;-,=f,. (2.3)

There is no longer a separate equation for the constraints
and the equations of motion are once again in the form of
ODES. While the size of the mass matrix JZ~ is JV x JV and
of minimal dimension, it no longer has a simple diagonal
structure.

Lower dimensional (and an ODE form) for the equations
of motion for molecular models with constraints can also
be obtained in a more natural manner by using internal
variable models. The use of internal variables preserves key
structural properties of the mass matrix and provides com-
putational advantages over the model defined by Eq. (2.3).

3. INTERNAL VARIABLE MODELS

In this section we describe an internal variable molecular
model consisting of clusters of atoms coupled together
with the permissible relative motion between them being
partially constrained. A cluster is defined to be a rigid body
formed by a collection of atoms or a section of a molecule
with frozen covalent structure such as the benzene rings in
polystyrene and the rings of certain amino acids in proteins
and polypeptides. A single atom can be regarded as a cluster
with zero extent and zero rotational inertia.

The topological structure of internal variable models for

a molecular system can vary based upon the nature of the
study. For instance, the tyrosine residue in the BPTI side-
chains can be considered as rigid for studying the overall
motion of BPTI. In this case the molecular model will have
a tree-topology structure (i.e., a structure with branching
but no closed loops formed by the clusters). However, when
the side-chain motions are studied (which are known to be
important in the function of the protein [23) they should be
modeled as being flexible and closed-chain topology models
are more appropriate. For simplicity, we restrict our
attention here to tree-topology molecular models. The
internal variable modeling scheme described here does not
require the use of virtual atoms and virtual bonds [lo].

One particular cluster in the tree is designated the base
cluster. It is slightly advantageous computationally to
choose as the base cluster one that minimizes the maximum
branch length (as measured in number of clusters), i.e.,
the base cluster atom should be somewhat mid-centered.
We adopt a parent/child designation for adjoining
clusters-with the one on the path to the base being the
parent cluster and the other one being the child cluster.
While each cluster has a unique parent, it can have zero or
more children. The parent/child designation is completely
determined for all the clusters in a molecule once a base
cluster has been designated. In Fig. 1, if cluster A is chosen
as the base cluster, it is the parent of clusters B and C, and
dually, B and C are its children. However, if cluster B is
chosen as the base cluster, then cluster A is the child of
cluster B, while cluster C is the child of cluster A.

We use the concept of a hinge to characterize the per-
missible relative motion between adjoining clusters. Each
hinge can possess between zero and six degrees of freedom
of relative motion. A zero degree of freedom hinge
corresponds to clusters that are coupled together rigidly. On
the other hand, a six degree of freedom hinge implies that
there is no coupling between the two clusters as is the case
for a pair of independent molecules. A bond for which only

FIG. 1. Illustration of clusters in molecular models and the hinges that
couple them.

A FAST ALGORITHM FOR MD SIMULATION 261

changes in the torsional bond angle are permitted is
modeled as a one degree of freedom rational hinge. On the
other hand, clusters coupled by a bond whose length alone
can vary is modeled as a one degree of freedom translational
(or sliding) hinge.

As shown in Fig. 1, for each hinge, we assign a coordinate
reference frame to each of the clusters coupled by the hinge
and designate them 0 + and 0 -. The motion of the hinge is
characterized by the motion of these hinge frames with
respect to each other. For a hinge with m degrees of
freedom, 0 denotes the vector of m generalized coordinates
which describe the state of the hinge. In the case of a one
degree of freedom rotational hinge, 8 is just the value of the
hinge angle. For a one degree of freedom translation hinge,
0 is the value of the bond displacement. The time derivative
vector 8 provides an obvious and common choice for the
generalized hinge velocity vector a. However, for multipie
degree of freedom hinges, alternative choices for B-referred
to as differentials of quasi-coordinates [19]-help simplify
the equations of motion and are often preferable. A case in
point is a three degree of freedom (ball and socket) rota-
tional hinge for which the 6 vector may consist of an Euler
angle or quaternion representation for the hinge orienta-
tion. For this case, the use of the relative angular velocity in
place of 8 as the generalized velocity vector simplifies the
equations of motion. The full unconstrained mobility of the
base cluster of a molecule is modeled by a six degree of
freedom hinge between the base cluster and the inertial
frame. The generalized velocity vector for this hinge is
simply the six-dimensional spatial velocity vector’ of the
base cluster. In general, there is always an (invertible)
kinematic function, 17(e), that maps the hinge velocity /? to
8 via 8 = Z7(0)/I. For the sake of notational simplicity and
with no loss in generality, we assume here that B is indeed
b for all the hinges.

The six-dimensional relative spatial velocity across a
hinge can be written in the form H*0, where H* is the
(6 x m)-dimensional hinge matrix representing the relative
motion characteristics of the m degrees of freedom hinge.
Some examples of the structure of the H* matrix are given

i:

0 0’ 0 0
0 0

i,

0 0
1 0 1 0
0 0 0 0
0 0 0 0
0 1 0 1

Torsional mode alone Stretching mode alone Torsional & stretching modes

(1 dof) (1 dof) (2 dof)

below:

’ The definition of spatial velocities and other spatial quantities is given
in Appendix A.

In the above examples, the components of the H matrix
remain constant in the 0 + and 0 - frames for arbitrary
hinge motions. This is true even for six degree of freedom
hinges for whom H* is the 6 x 6 identity matrix. In other
instances of multiple degree of freedom hinges, the axis of
motion of a component degree of freedom can depend upon
the motion of other component degrees of freedom. When
this is the case, we decompose the hinge degrees of freedom
into component hinges and separate them by pseudo-
clusters (clusters with zero mass and zero extent) such that
the component hinges can be characterized by constant H
matrices. Thus for the example of a hinge with free bond and
torsion angle degrees of freedom, we introduce a pseudo-
cluster so that there is only a one degree of freedom bond
angle hinge between the inboard cluster and the pseudo-
cluster, and a one degree of freedom torsional hinge between
the pseudo-cluster and the outboard cluster. We will assume
below that this type of a decomposition has been carried out
throughout the molecular model.

4. EQUATIONS OF MOTION

In this section, we describe the equations of motion for
internal variable models for molecular systems. We make
extensive use of the spatial operator algebra approach that
has been used in the past for multibody dynamics applica-
tions [13, 141. We adopt a Newton-Euler approach since it
readily reveals the inherent recursive relationships among
the various dynamical quantities. We use coordinate-free
spatial notation in our development and a brief overview of
some of the definitions and notation is described in
Appendix A.

At first we restrict our attention to branchless molecular
models, i.e., models whose structure is in the form of a serial
chain. Later, we describe the straightforward extensions
required to handle tree-topology molecular models. In a
serial chain, each atom cluster has a unique parent and a
unique child, and this helps simplify the notation.

We assume that the serial chain contains n clusters and
that the total number of degrees of freedom in the system
is JV. One of the extremal clusters is designated the base
cluster, and the cluster at the other end of the chain is
referred to as the “tip” cluster. We assign numbers from one
through n to the clusters in increasing order from the tip to
the base. The kth hinge in the serial chain couples together
the (k + 1)th and kth clusters, and associated with it are
the pair of hinge frames 0: and 0; shown in Fig. 2. The
generalized coordinates and the hinge matrix for the kth
hinge are given by B(k) and H*(k), respectively. The parent
and child of the kth cluster are the (k+ 1)th and the
(k - 1)th clusters, respectively. The point denoted CA4 on
each cluster designates its center of mass. The mobility
of the base cluster (the nth cluster) is accounted for by
attaching a six degree of freedom hinge between it and the

262 JAIN, VAIDEHI, AND RODRIGUEZ

4 Towards Base Towards Tip -

FIG. 2. A molecular model consisting of atomic clusters coupled together in a serial chain.

inertial frame. The index (n + 1) is used for the inertial
frame.

The spatial velocity, V(O;), of frame 0, can be com-
puted recursively as described by the following equation
(see Eq. (A.3)):

v(u,)=q5*(0,,, Ok) v(u,,)+H*(k) 8(k). (4.1)

Here do;+ 17 Coi) is a spatial transformation matrix
described in Appendix A. We use the notational shorthand
x(k) to denote a quantity of the form x(0;) in the remain-
der of this paper. Thus, Eq. (4.1) can be rewritten as

V(k) = (b*(k + 1, k) V(k + 1) + H*(k) 8(k). (4.2)

The recursive expression for the spatial acceleration a(k) of
frame 0; is obtained by taking the time derivative of both
sides of Eq. (4.2)

a(k) = p(k) = #*(k + 1, k) a(k + 1) + H*(k) 8(k) + u(k),

(4.3)

where the expression for the Coriolis acceleration term u(k)
is given by

a(k) =

(4.4)

The notation 2 denotes the cross product tensor associated
with a three-dimensional vector x. Since H(k) is constant in
the frames 0, and 0:) o(k + 1) can be used in place of
o(k) in the second term on the right-hand side of Eq. (4.4).

The gradient of the potential function, PE
(=S[x] +9[0])), with respect to the generalized coor-
dinates 8(k) gives the vector of effective generalized forces
for the kth hinge. These are usually computed for all the
hinges prior to solving the equations of motion..Due to its
functional form, the computation of

(4.5)

is straightforward. On the other hand, the computation of
the gradient Ve&‘[x] is more complex and Ref. [lo]
describes a procedure for its computation. Our algorithm
avoids the computation of V,(,,B[x]. In its place, we
make use of the simpler gradient of 9[x] with respect to the
Cartesian position of the atoms. With xi(k) denoting the
position of the ith atom of the kth cluster, the gradient,
fi(k) = V+)P[x], denotes the three-dimensional Car-
tesian force acting on the atom. The Cartesian forces for all
the atoms in a cluster are combined together to yield a single
effective six-dimensional Cartesian spatial force on the
cluster; If the kth cluster has r(k) atoms, the effective spatial
force f,(k) on the cluster is given by

(4.6)

where I[@ - (k), xi(k)] is the vector from the kth hinge
frame 0, to the location of the ith atom of the kth cluster.
We assume that the gradients T(k) and f=(k) have been
computed and are available for all the clusters and hinges.

Withy(k) denoting the spatial force of interaction at 0;
between the (k + 1) th and the k th clusters, and M(k) denot-

A FAST ALGORITHM FOR MD SIMULATION 263

ing the spatial inertia of the kth cluster about the frame 0;)
the equations of motion of the kth cluster about 0, are (see
Eq. (A-5))

f(k) = $w, k - 1)f(k - 1) + M(k) a(k) + b(k) +.m
(4.7)

T(k) = fw)f(k);

b(k) is the spatial gyroscopic force for the kth cluster
(defined in Eq. (A.6)). The incorporation of the gradients
T(k) andf,(k) in separate ways into the equations of motion
in Eq. (4.7) allows us to avoid computing the gradient
~S(k)~)c~l.

Putting together Eq. (4.2bEq. (4.7), leads to the
following Newton-Euler recursive equations of motion for
the whole system: e

V(n+ l)=O, a(n+ l)=O
for k = II . . .‘l

V(k) = tj*(k + 1, k) V(k + 1) + H*(k) b(k)
a(k) = 4*(k + 1, k) ct(k + 1) + H*(k) 8(k) + u(k)

end loop
(4.8)

f(0) = 0
for k = 1 . . . n

f(k) = 4% k - 1)f(k - 1) + M(k) u(k) + b(k) + &k)
T(k) = H(k)f(k)

end loop

We now introduce spatial operators and use them to
express the equations of motion in a more concise form. The
operators ME %6n x6n and HE !RM x 6n are block diagonal
matrices defined as M=diag{M(l)...M(n)} and H=
diag(H(1) . . . H(n)}, while the operator L$ is defined as the
following lower-triangular matrix:

0 0 0 0
1) 0 *** 0 0

#(3,2) .-a 0 0
* .

0 ... d(n,n-1) 0, i *

Eg6nx6n

(4.9)

The zero entries denote (6 x 6)-dimensional zero matrices.
We use the notation V to denote the 6n-dimensional stacked
column vector [V*(1) . . . I’*(n)]*. Similarly we define the
vectors 9, u, a, and so on by stacking up the contributions
from each cluster. Using these newly defined quantities, it is
easy to see that the recursive equation for V(k) in Eq. (4.8)
can be collectively rewritten as

V= 8; V+ H*b. (4.10)

The inverse of [Z-&b] can be readily shown to be the
lower-triangular spatial operator 4 given by

/ z 0 -.o\

(j p [Z-&]-l= 4t2; l) f ,-’ ‘?
1. . I

EgJ6nx6n

qs(i 1) & 2) .:: Z (4.L)

where

d(i,j) k &i, i- l)...&j+ 1,j) for i >j.

In Eq. (4.1 l), the zero and Z entries denote (6 x 6)-dimen-
sional zero and identity matrices respectively. Using
Eq. (4.11) in Eq. (4.10) leads to the following equation
for V:

V= q5*H*& (4.12)

The special structure of the spatial operators allows high-
level operator expressions involving them to be directly
mapped into recursive algorithms, and the explicit com-
putation of their elements is not required. The corre-
spondence between operator expressions and recursive
computations is illustrated by the equivalence of the
operator expression in Eq. (4.12) and the recursive expres-
sion for V(k) in Eq. (4.8).

Continuing along these lines, all the component level
equations in Eq. (4.8) can be rewritten using operators as
follows:

V= #*H*e

a = r$*(H*8 + a) (4.13)

f = #(Ma + b +fJ = #Mq+*H*ti + qh(Mq5*a + b +fJ

T= Hf = HqkCfqb*H*8 + HqS(Md*a + b +fc).

In particular, the equations of motion have the form

where

T=Jz’(O)d+%(O, e), (4.14)

d!(e) 4 H~M~*H*E%~“~ (4.15a)

GfZ(e, b) ii Hcj(M4*a + b + jc) E ‘SM. (4.15b)

Here, A? is the mass matrix of the serial chain and 9? is the
vector of Coriolis, centrifugal, gyroscopic, and Cartesian
forces. Note that J# and %? are nonlinear functions of 0 and
4. The factorization in Eq. (4.15a) of the mass matrix JSG? is
referred to as the Newton-Euler operator factorization [131
because it is equivalent to the Newton-Euler recursive
algorithm in Eq. (4.8).

The solution of the equations of motion in Eq. (4.14) for
the accelerations vector 8 is required by the integrator to
propagate the state of the system during MD simulations.

581/106/Z-5

264 JAIN, VAIDEHI, AND RODRIGUEZ

However, Eq. (4.14) represents only a conceptual statement
of the dynamics problem since .M and % are not explicitly
available. The conventional approach for computing the
accelerations 8 consists of first computing both J? and 97
and then solving the linear matrix equation for the vector &
In general, d is fully populated and, as a result, the
computational cost of solving the equations of motion using
this method grows cubically with the number of degrees of
freedom in the system; i.e., this is an O(,V3) method. Even
though an order of magnitude reduction in computational
times is achieved compared to the conventional Cartesian
model based methods [lo], the cubic dependency leads to
large computational costs for large molecules.

In the next section we describe a recursive algorithm for
computing the vector of generalized accelerations 8 without
having to explicitly compute the mass matrix. The com-
plexity of this method is only O(N); i.e., its computational
cost grows only linearly with the number of degrees of
freedom in the model.

5. RECURSIVE SOLUTION OF
EQUATIONS OF MOTION

An operator factorization of the system mass matrix A,
denoted the innovations operator factorization, is derived in
this section. This factorization is an alternative to the
Newton-Euler factorization in Eq. (4.15a) and, in contrast
with the latter, the factors in the innovations factorization
are square and invertible. Operator expressions for the
inverse of these factors are derived and lead to an expression
for the inverse of the mass matrix. Using further operator
identities, we obtain an operator expression for the
generalized accelerations 8. The recursive implementation
of this expression leads to the O(J) recursive dynamics
algorithm. Following this, we describe the extensions
required to handle tree-topology molecular models and the
computational cost for the algorithm.

5.1. Operator Expression for the Mass Matrix Inverse

Given below is a recursive algorithm which defines some
required quantities such as P(k), D(k), etc. for each of the
clusters:

P+(0)=OE9Px6
for k = 1 . . . n

P(k)=d(k,k-l)P+(k-1)
x qb*(k, k - 1) + M(k)

D(k) = H(k) P(k) H*(k)
G(k) = P(k) H*(k) D-l(k)

K(k + 1, k) = 4(k + 1, k) G(k)
t(k) = I- G(k) H(k)

P+(k) = t(k) P(k)
t,b(k+ 1, k) = 4(k + 1, k) f(k)

end loop

(5.1)

This recursive equation for P(k) is a discrete Riccati
equation and has been extensively studied in control and
estimation theory [20]. The operator P E ‘3’” x 6n is defined
as a block diagonal matrix with the kth diagonal element
being P(k). The quantities defined in Eq. (5.1) form the
component elements of the following spatial operators:

D P HPH* = diag{ D(k)} E ‘S2” x N

G e PH*D-’ = diag(G(k)} E !K6nxN

K 6 EbG~E6nxJY

z g I- GH= diag{i(k)} E %6nx6n.

(5.2)

The only nonzero block elements of K are the K(k + 1, k)
elements along the first sub-diagonal. We define the
operators & and Ic/ as

/ I 0 . ..o\

$ g [Z-&J’= yJ) f
i. .

:I’ 0
-1

Eg6nx6n

lj(i, 1) I/&, 2) ..: ; (5.;)

where

$(i,j) P Il/(i, i- l)...+(j+ 1,j) for i> j. (5.5)

The structure of the operators J& and + is identical to that
of the operators L$ and 4 except that the component
elements are now t,b(i,j))s rather than d(i,j))s. Also, the
elements of + have the same semigroup properties
(Eq. (5.5)) as the elements of the operator 4, and as a conse-
quence, high-level operator expressions involving them can
be directly mapped into recursive algorithms. The explicit
computation of all the elements of the operator $ is not
required.

The innovations operator factorization
matrix is an alternative to the factorization
and is described by the following lemma.

LEMMA 5.1.

of the mass
in Eq. (4.15a)

Al = [I+ Hq6K] D[Z+ HdK]*. (5.6)

Proof: See Appendix B. 1

Note that the factor [I+ HbK] E !IIMyxM is square,
block lower triangular, and nonsingular, while D is a block

A FAST ALGORITHM FOR MD SIMULATION 265

diagonal matrix. This factorization provides a closed form
operator expression for the block LDL* decomposition of
1. The following lemma gives the closed form operator
expression for the inverse of the factor [Z+ Z&J%].

LEMMA 5.2.

[Z+ HqM] -l = [Z- Hlf9K-J. (5.7)

ProoJ: See Appendix B. 1

It follows from Lemmas 5.1 and 5.2 that the operator
expression for the inverse of the mass matrix is given by:

LEMMA 5.3.

A’-‘= [Z-H$K]* D-‘[I-H+K]. (5.8)

Once again, note that the factor [Z- ZZ+K] is square,
block lower triangular, and nonsingular and so Lemma 5.3
provides a closed form expression for the block LDL*
decomposition of 4 - ‘.

5.2. Recursive Computational Algorithm

The following lemma describes the operator expression
for the generalized accelerations 8 in terms of the hinge
forces T and Cartesian spatial forcesfc.

LEMMA 5.4.

8= [Z-H$K]* D-’

x[T-H+{KT+Pa+b+f=}]-K*ll/*a. (5.9)

Proof See Appendix B. 1

Equation (5.9) can be decomposed into the following
sequence of expressions:

z=$[KT+Pa+b+f=]

s=T-Hz

v=D-% (5.10)

a=$[H*v+a]

8=v-K*a.

The recursive implementation of Eq. (5.10) leads to the
following O(J) computational algorithm for the accelera-
tions, i$

z+(o)=0
for k = 1 . . . n

z(k)=&k,k-l!z+(k-l)+P(k)a(k)
+ b(k) + f,(k)

s(k) = T(k) - H(k) z(k)
v(k) = D-‘(k) s(k)

z+(k) = z(k) + G(k) E(k)
end loop

(5.11a)

The dynamics algorithm described above is for molecular
models with unbranched, serial chain structure. The exten-
sion of the algorithm to molecular models with general tree-
topology structure is simple [141. In tree-topology models,
each cluster can have more than one child. Thus, the
structure of the algorithm now consists of a tips-to-base
recursion followed by a base-to-tips recursion. The changes
required in the recursion steps are:

l During a tips-to-base inward recursion, at each
cluster, the results from each of the children clusters are
summed up before proceeding with the recursion.

a(n+ l)=O
for k = n . . . 1

a+(k) = #*(k + 1, k) a(k + 1)
B(k) = v(k) - G*(k) a+(k)
a(k) = a+(k) + H*(k) 8(k) + a(k)

end loop

(5.11b)

This algorithm does not require either the explicit computa-
tion of the mass matrix A, nor the numerical solution of
the matrix equation Eq. (4.14). The steps in the above
algorithm can be summarized as follows:

1. The first step is a recursion from the base to the tip to
compute the orientation, location, and spatial velocities,
V(k), and the Coriolis and gyroscopic terms a(k) and b(k)
for each of the clusters using Eq. (4.2), Eq. (4.4), and
Eq. (A.6).

2. Next follows a recursion from the tip towards the
base as delined by Eq. (5.1) to compute the P(k)?.

3. The recursion in Eq. (5.11a) from the tip to the
base is used next to compute the residual forces z(k). This
recursion can be combined with the tip to base recursion in
the previous step to obtain a single tip to base recursion
sequence.

4. Finally, the base to tip recursion described by
Eq. (5.11b) computes the 8(k) accelerations for all the
clusters.

The computational cost of this algorithm depends only
linearly on the number of clusters. This is discussed in more
detail in Section 5.4. The structure of this algorithm closely
resembles those found in Kalman filtering and smoothing
theory [15,20].

This algorithm has been implemented and tested quite
extensively for robot and spacecraft dynamics applications.
It is currently being used for MD simulations and the results
from the ongoing studies will be reported in a forthcoming
publication.

5.3. Extensions to Branched Molecular Structures

266 JAIN, VAIDEHI, AND RODRIGUEZ

l During a base-to-tips outward recursion, at each
cluster, the recursions are continued separately along the
outgoing children branches.

Extensions of the algorithm to molecular models with
closed topology can be carried out using the analysis and
algorithms described in Ref. [14]. A major step of the
algorithm for closed-chain models requires solving the
equations motion of a tree-topology subsystem using
precisely the algorithm described here.

5.4. Computational Costs

As mentioned earlier, the dynamics algorithm in Sec-
tion 5.2 is of O(M) complexity, i.e., its complexity grows
only linearly with the number of degrees of freedom. For a
fixed number of degrees of freedom, .hf, the computational
cost is maximal for a molecular system with serial chain
structure, no point mass clusters, and only single degree of
freedom hinges. For such systems, the computational cost in
floating point operations is roughly 5OO.N. The presence
of point-masses, multiple degree of freedom hinges, or
branches reduces the computational cost.

Recall that the O(N’) method requires first the computa-
tion of the mass matrix ~8 and the vector ‘Z, followed by
the solution of a linear matrix equation of size N. The
computational cost in floating point operations for such
O(N3) algorithms is given roughly by the polynomial
N3/3 + 19X2 + 35OM for a serial chain system with single
degree of freedom hinges and no point-masses.

Figure 3 compares the computational cost of the O(N)
algorithm with the O(Z3) algorithm. The computational
efficiency of the O(N) algorithm increases rapidly with the
size of the molecule. Consider the example of a polypeptide
molecule with each residue regarded as a rigid atomic

1091 I

0 100 200 300 400 500 600 700 800 900 loo0

Number of degrees of freedom

FIG. 3. Comparison of the computational cost (in floating point
operations) for the O(N) and 0(N3) algorithms for solving the equations
of motion.

cluster. We assume that there are two bending degrees of
freedom between neighboring clusters. For this molecular
system, the number of degrees of freedom is approximately
twice the number of residues. For a polypeptide molecule
with 400 residues, the cost for the 0(X’) algorithm is
approximately 450 times larger than that for the O(M)
algorithm.

6. CONCLUSIONS

The use of constrained molecular models allows the use of
significantly larger integration time steps during molecular
dynamics simulations when compared with Cartesian
models. We have studied the use of internal variable
molecular models to handle inter-atomic constraints, and
we have developed a fast recursive O(M) algorithm for
solving the equations of motion for these models. The spa-
tial operator algebra methods used here were originally
developed for the analysis and high-speed dynamics simula-
tion of complex multibody systems such as robots,
spacecraft, and vehicles. The O(M) algorithm is obtained
by developing operator expressions for the factorization
and inversion of the system mass matrix. This leads to
closed form expressions for the generalized accelerations.
The algorithm is recursive in nature and consists of sweeps
from the tips-to-the-base and from the base-to-the-tips of
the molecular model.

In contrast with the O(N3) algorithms typically used for
internal variable models, the O(N) algorithm developed
here requires neither the computation of the mass matrix
nor the solution of the linear matrix equation in Eq. (1.1).
Instead, it directly solves for the accelerations of the system.
Since it solves the equations of motion exactly, it provides
improved numerical stability over iterative techniques such
as the SHAKE algorithm.

Only gradients of the potential functions with respect to
the natural coordinates are required by the algorithm. These
gradients are considerably simpler to compute than the
more generally used gradients with respect to internal coor-
dinates. This simplifies the computation of the inter-atomic
forces.

Based upon prior work [14] this algorithm extends
readily and naturally to molecular models with closed
topologies. This approach also allows changing of con-
straints during simulations and can be useful for modeling
events such as the making and breaking of bonds.

APPENDIX A: SPATIAL NOTATION

The use of spatial quantities considerably simplifies the
expressions and analysis of the equations of motion of
multibody systems (see [21] for more details). The spatial

A FAST ALGORITHM FOR MD SIMULATION 267

&ocity, V(O), of a coordinate frame is a six-dimensional
vector defined by combining its three-dimensional angular
and linear velocity vectors o(0) and u(0). Similarly, the
spatid force, f(U), is a six-dimensional vector which
combines the moment and force components N(O) and
~(0). The specific definitions are

V(U) P ($;), f(U) k (;;;;). (A.1)

The spatial acceleration, a(U), of frame Lo is the time
derivative, v(U), of the spatial velocity vector. We denote
by I(@., 0,) the three-dimensional vector from the origin of
frame 0, to the origin of frame 0,. Associated with a pair of
such frames is also a 6 x 6 spatial transformation matrix
&U, , 0,) defined as

(A.2)

In the above, I3 and O3 denote (3 x 3)-dimensional identity
and zero matrices, respectively, and. the notation 2 denotes
the cross-product tensor associated with a three-dimen-
sional vector x. The transformation matrix #(S, , 0,) trans-
forms spatial quantities between the two frames 0, and 0, as

f(C) = 4(&T U,)f(U,), V(qJ = #*(ux, co,> V(eJ.

(A.3)

The symbol * denotes the matrix transpose operation. The
spatial inertia, M(U) of a rigid body about the frame 0 is
defined as

(A-4)

Here m denotes the mass of the body, p the vector from
frame 0 to the body’s center of mass, and 9(U) is the 3 x 3
inertia matrix for the body about the reference frame 0.

With f(U) denoting the effective spatial force on a rigid
body about frame 0, the equations of motion about the
frame can be written as

f(U) = M(U) a(U) + b(U) (~4.5)

where the gyroscopic spatial force b(k) has the form

b(U) = %@I 9(U) 4@9
m&j(U) c%(U) l(U, I?&) > .

04.6)

APPENDIX B: PROOFS OF THE LEMMAS

The proofs of the lemmas in this publication are closely
parallel those described in Ref. [13,211 for rigid multibody
Systems.

Proof of Lemma 5.1. It is easy to verify that TPp = TP.
As a consequence, the recursion for P(.) in Eq. (5.1) can be
rewritten in the form

Pre- and post-multiplying the above by C$ and d*, respec-
tively, then leads to

Hence,

A=H&V+*H* =H[P+JP+P$+ +qSKDK*d*] H*

= D + Hq5KD + DK* I@” H* + HqSKDK* d* H*

=[I+HQK]D[I+H#K]*. 1

Proof of Lemma 5.2. Using a standard matrix identity
we have that

[I+ Hq5K]-’ =I- H4[I+ KHq5]-’ K. 03.2)

Note that

IC/-‘=I-~~=(Z-~~)+C$,GH=~-’ +KH (B.3)

from which it follows that

Using this with Eq. (B.2) it follows that

Proof of Lemma 5.4. From Eq. (4.13) the expression for
the generalized accelerations 8 is given by

d=A-‘(~-w)= [I-H$K]*

x D-ICI- H$K][T- Hq5[Mqb*a + b +fc]]. 03.4)

From Eq. (B.3) we have that

[I-H$K]HqS=H$[ti-‘-KH]$=H$. (B.5)

Thus Eq. (B.4) can be written as

8= [I- H$K]* D-‘[T- H$[KT+ Md*a + b +fc]].

(Jw

From Eq. (B.l) it follows that

M= P-&P&$ =N/Mq5*=~P+P~ (B.7)

268 JAIN, VAIDEHI, AND RODRIGUEZ

and so Eq. (B.6) simplifies to

e= [z-H@q* D-‘[T-H~[KT+Pa+b+~]-HPpj*a].

(B.8)

From Eq. (B.3) we have that

[I- Ht)K]* D-‘HZ@

= [I-f#K]* K*g* =K*$* [I,-* -KH]* $* = K*+*.

(B.9)

Using this in Eq. (B.8) leads to the result. 1

ACKNOWLEDGMENTS

The research described in this paper has been performed partially at
the Jet Propulsion Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Administration.

4.

5.

6.

I.
8.
9.

10.

11.
12.
13.

14.

15.

16.

17.

REFERENCES
18.

1. M. Karplus and G. Petsko, Science 347, 631 (1990).
2. C. Brooks, M. Karplus, and B. Pettitt, A Theoretical Perspective of

Dynamics, Structure and Thermodynamics (Wiley, New York, 1988).
3. A. Warshel, Computer Simulation of Chemical Reactions in Enzymes

and Solutions (Wiley, New York, 1991).

19.

20. G. Rodriguez, IEEE J. Rob. Automat. 3,624 (1987).
21. A. Jain, J. Guidance Control Dyn. 14, 531 (1991).

K. Gibson and H. Scheraga, .I. Comput. Chem. 11 (4), 468 (1990).

B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan, and
M. Karplus, .I. Comput. Chem. 4 (2), 187 (1983).

J. Mcammon and S. Harvey, Dynamics of Proteins and Nucleic Aci&
(Cambridge Univ. Press, Cambridge, 1987).
M. Pear and J. Weiner, J. Chem. Phys. 71,212 (1979).
R. Edberg, D. Evans, and G. Morriss, J. Phys. Chem. 84,6933 (1986).
A. Mazur and R. Abagyan, J. Biomol. Struct. Dyn. 6 (4), 815 (1989).
A. Mazur, V. Dorofeev, and R. Abagyan, .I. Comput. Phys. 92, 261
(1991).
J. Durup, J. Phys. Chem. 95 (4), 1817 (1991).
J. Perram and H. Petersen, Mol. Phys. 65 (4), 861 (1988).

G. Rodriguez, K. Kreutz-Delgado, and A. Jain, Ink J. Rob. Res. 10,371
(1991).
G. Rodriguez, A. Jain, and K. Kreutz-Delgado, .I. Astronaut. Sci. 40,27
(1992).
B. D. 0. Anderson and J. B. Moore, Optimal Filtering (Prentice-Half,
Englewood Cliffs, NJ, 1979).
J. Chandrasekar, S. Smith, and W. Jorgensen, J. Am. Chem. Sot. 107,
155 (1985).
J. Hwang, G. King, S. Creighton, and A. Warshel, J. Am. Chem. Sot.
110,5297 (1988).

N. Vaidehi, T. A. Wesolowski, and A. Warshel, J. Chem. Phys. 97,4264
(1992).
L. Meirovitch, Methoak of Analytical Dynamics (McGraw-Hill,
New York, 1970).

