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In this paper, we develop a recursive algorithm for solving the 
dynamical equations of motion for molecular systems. We make use 
of internal variable models which have been shown to reduce the 
computation times of molecular dynamics simulations by an order 
of magnitude when compared with Cartesian models. The O(.N) 
algorithm described in this paper for solving the equations of motion 
provides additional significant improvements in computational speed. 
We make extensive use of the spatial operator methods which have 
been developed recently for the analysis and simulation of the dynamics 
of multibody systems. The spatial operators are used to derive the equa- 
tions of motion and obtain an operator expression for the system mass 
matrix. An alternative square factorization of the mass matrix leads to a 
closed form expression for its inverse. From this follows the recursive 
algorithm for computing the generalized accelerations. The computa- 
tional cost of this algorithm grows only linearly with the number of 
degrees of freedom. This is in contrast to conventional constrained 
dynamics algorithms whose cost is a cubic function of the number of 
degrees of freedom. For the case of a polypeptide molecule with 400 
residues, the O(N) algorithm provides computational speedup by a 
factor of 450 over the conventional O(.N3) algorithm. We also describe 
a simplified method for computing and handling the potential function 
gradients within the dynamics computations. 0 1993 Academic PMS, h. 

1. INTRODUCTION 

Molecular dynamics (MD) simulations are being used 
increasingly to model structure-function relationships of 
chemical reactivity of macromolecules and to study the 
structural evolution of proteins, nucleic acids, and other 
polymers [l-3]. However, large computational times are a 
significant limiting factor on the time-scales over which MD 
simulations are currently feasible. Reference [4] contains 
an overview of some of the literature on the development 

of dynamics models and computational techniques for 
molecular systems. 

The Cartesian model for molecular systems is widely used 
due to its simplicity and ease of application [3, 5, 61. In this 
model, all the atoms in the system are treated as free par- 
ticles and their accelerations are computed independently 
using Newton’s law. Thus, the equations of motion for this 
model are highly decoupled. 

Hard constraints on bonds are often used to eliminate 
from molecular models lightly excited degrees of freedom 
(e.g., inter-atomic oscillations, rotations about double 
bonds) and those that have insignificant effect on long time- 
scale processes such as conformational changes in macro- 
molecules [4,7-121. This is particularly important for high- 
frequency degrees of freedom since they force the use of 
small integration step-sizes which severely limit the time- 
scales for MD simulations. While constrained models may 
be unsuitable for studying transition states during chemical 
reactions, models with varying levels of constraints can be 
very useful for large time simulations. 

With the addition of constraints, the equations of motion 
for the Cartesian model are no longer ordinary differential 
equations (ODES), but are instead more complex differen- 
tial-algebraic equations (DAEs). The SHAKE algorithm is 
widely used to handle these inter-atomic constraints [6]. In 
this algorithm, the “unconstrained” ODE component of the 
equations of motion is used to compute an initial estimate 
of the change in the conformational state of the system. 
This estimate is modified iteratively until it satisfies the 
constraints to within acceptable error limits. 

An alternative approach, for molecular models with 
constraints, is to use internal coordinates to directly incor- 
porate the constraints into the dynamical model [4,9, 101. 
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In such internal variable models, the number of generalized 
coordinates for the molecular system is smaller than in 
the corresponding Cartesian models. The internal variable 
model we describe and use in this paper consists of rigid 
subunits of atoms-referred to as clusters-whose relative 
motion is described by the internal coordinates. We limit 
our attention here to tree-topology (branched) molecular 
models, that is, models in which the clusters do not form 
any closed loops. Individual clusters can, however, contain 
closed loops formed by atoms. For tree-topology molecular 
models, the generalized coordinates are of minimum dimen- 
sion and the equations of motion are ODES rather than the 
DAEs obtained using Cartesian models. The integration of 
the equations of motion is thus considerably simpler. 

The equations of motion for an internal variable model 
for a tree-topology molecular system with Jf degrees of 
freedom can be expressed as follows: 

# 

A!(bg + qe, 8) = T(8). (1.1) 

Here 8 denotes the N-dimensional vector of generalized 
coordinates, T is the X-dimensional vector of generalized 
forces, Jt? is the JV x JV” symmetric and positive definite 
mass matrix, and V is the &-dimensional vector of Coriolis 
and other (velocity dependent) nonlinear forces. While the 
dimension of the mass matrix J? is less than that for the 
Cartesian model, it is no longer diagonal, and it also 
depends nonlinearly upon 13. Lagrangian analysis has been 
used to derive expressions for the components of J? and G$ 
in [4,9, lo]. The dynamics algorithm in [ 101 for computing 
the acceleration vector 8 consists of computing A, %?, and 
T explicitly and then solving the linear matrix equation in 
Eq. (1.1). Due to the coupled structure of A, the computa- 
tional cost of this step is typically a cubic function of J”. The 
cost of this O(JV’) algorithm increases rapidly for large 
molecules. Even though an order of magnitude reduction in 
computational time is achieved compared to the conven- 
tional Cartesian model, the sharp increase in computational 
cost as molecular size increases is a major limiting factor for 
the internal variables approach. 

In this paper we describe a fast recursive algorithm for 
solving the equations of motion for internal variable 
molecular models. The computational cost of this algorithm 
is a linear function of the number of degrees of freedom. 
Thus, computation times are significantly reduced. The 
algorithm does not require either the explicit computation 
of the mass matrix JSY or the explicit solution of the linear 
matrix equation in Eq. (1.1). It also provides a simplified 
method for computing the forces arising from the potential 
functions by eliminating the need to compute the gradient of 
the Cartesian potential functions with respect to the internal 
variables. 

The algorithm is based on the recently developed spatial 
operator algebra which has been used for the analysis 
and high-speed simulation of the dynamics of complex 

multibody systems such as robots, spacecraft, and vehicles 
[13, 141. This methodology uses spatial operators to 
concisely derive the equations of motion, to reduce the 
complexity of dynamics models, and to develop fast 
recursive computational algorithms. We include here for 
completeness the relevant aspects of the formulation and 
derivation of the algorithm and refer the reader to the above 
references for additional details. The spatial operator 
algebra algorithms are very similar to those used in the 
well-studied areas of Kalman filtering and smoothing [ 151. 
Thus, a substantial body of knowledge exists about issues 
such as numerical stability and software architectures. 
Extensions of the algorithm to closed-topology molecular 
models, i.e., models containing clusters in closed loops, are 
straightforward [ 141. 

2. DYNAMICAL MODELS FOR MOLECULAR 
SYSTEMS 

All methods for simulating the dynamics of molecular 
systems require two major computational steps: (i) the 
computation of forces for the current conformational state 
of the molecule; (ii) the solution of the equations of motion 
and their subsequent integration for the calculation of the 
trajectories. 

The forces of interaction between atoms in a molecule are 
typically described by means of potential functions. The 
potentials are classified as being due to bonding or non- 
bonding interactions. The bond potential is classically taken 
to be a quadratic, harmonic, or a Morse-type potential. The 
non-bonded interactions include van der Waal attraction, 
electrostatic interaction, dipole-dipole interaction, and dis- 
persion forces [3,6]. Several levels of quantum mechanical 
calculations of the potential energy surface are available 
[ 16181. The expression for the potential function PE can 
be written as the combination of a function of Cartesian 
coordinates, P[x], and another function of internal 
coordinates, B [ 01, as 

PE=s[O] +S[x]. 

The gradients of S[x] and S[&J are used to calculate the 
inter-atomic forces required for solving the equations of 
motion. 

The free atom Cartesian model for molecules constitutes 
the simplest of possible dynamics models with each atom 
regarded as an unconstrained point mass particle. Let n 
denote the number of atoms in the molecular model. Once 
the 3n-dimensional vector of inter-atomic forces f is 
computed, the acceleration of each atom is obtained using 
Newton’s law. The equations of motion for the atoms in the 
Cartesian model can be written in matrix form as 

d&ji=f, (2.1) 
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where the mass matrix J& is a 3n x 3n diagonal matrix 
whose diagonal elements are the masses of the atoms, while 
x E %” is the vector of Cartesian coordinates of the atoms. 

In order to increase integration step size, hard constraints 
are often imposed on the lightly excited degrees of freedom 
in the molecular model. Assuming that there are m such 
constraints, they can be expressed as instantaneous linear 
constraints on the atomic velocities as 

AR=B. (2.2) 

Here A E %“’ x 3n denotes the constraint matrix and B E 91m is 
the constraint vector and in general they both depend upon 
the configuration of the molecule. Solving for the accelera- 
tions, ji, requires the solution of Eq. (2.1) subject to the 
constraint defined by Eq. (2.2). Due to the constraints, the 
equations of motion are now no longer ODES but are 
instead the more complicated DAEs. The computation of 
the accelerations ji can be carried out using iterative 
methods such as the SHAKE algorithm [6] or by using 
Lagrange multipliers. 

An alternative approach for handling constraints is to use 
Eq. (2.2) to numerically eliminate some of the components 
off from Eq. (2.1) to obtain a generalized velocity vector i, 
of minimal dimension JV 4 3n - m. M represents the num- 
ber of degrees of freedom remaining in the molecular model 
after the imposition of the constraints. This results in a 
dimensionally reduced form of the equations of motion: 

.4&-i;-,=f,. (2.3) 

There is no longer a separate equation for the constraints 
and the equations of motion are once again in the form of 
ODES. While the size of the mass matrix JZ~ is JV x JV and 
of minimal dimension, it no longer has a simple diagonal 
structure. 

Lower dimensional (and an ODE form) for the equations 
of motion for molecular models with constraints can also 
be obtained in a more natural manner by using internal 
variable models. The use of internal variables preserves key 
structural properties of the mass matrix and provides com- 
putational advantages over the model defined by Eq. (2.3). 

3. INTERNAL VARIABLE MODELS 

In this section we describe an internal variable molecular 
model consisting of clusters of atoms coupled together 
with the permissible relative motion between them being 
partially constrained. A cluster is defined to be a rigid body 
formed by a collection of atoms or a section of a molecule 
with frozen covalent structure such as the benzene rings in 
polystyrene and the rings of certain amino acids in proteins 
and polypeptides. A single atom can be regarded as a cluster 
with zero extent and zero rotational inertia. 

The topological structure of internal variable models for 

a molecular system can vary based upon the nature of the 
study. For instance, the tyrosine residue in the BPTI side- 
chains can be considered as rigid for studying the overall 
motion of BPTI. In this case the molecular model will have 
a tree-topology structure (i.e., a structure with branching 
but no closed loops formed by the clusters). However, when 
the side-chain motions are studied (which are known to be 
important in the function of the protein [ 23 ) they should be 
modeled as being flexible and closed-chain topology models 
are more appropriate. For simplicity, we restrict our 
attention here to tree-topology molecular models. The 
internal variable modeling scheme described here does not 
require the use of virtual atoms and virtual bonds [lo]. 

One particular cluster in the tree is designated the base 
cluster. It is slightly advantageous computationally to 
choose as the base cluster one that minimizes the maximum 
branch length (as measured in number of clusters), i.e., 
the base cluster atom should be somewhat mid-centered. 
We adopt a parent/child designation for adjoining 
clusters-with the one on the path to the base being the 
parent cluster and the other one being the child cluster. 
While each cluster has a unique parent, it can have zero or 
more children. The parent/child designation is completely 
determined for all the clusters in a molecule once a base 
cluster has been designated. In Fig. 1, if cluster A is chosen 
as the base cluster, it is the parent of clusters B and C, and 
dually, B and C are its children. However, if cluster B is 
chosen as the base cluster, then cluster A is the child of 
cluster B, while cluster C is the child of cluster A. 

We use the concept of a hinge to characterize the per- 
missible relative motion between adjoining clusters. Each 
hinge can possess between zero and six degrees of freedom 
of relative motion. A zero degree of freedom hinge 
corresponds to clusters that are coupled together rigidly. On 
the other hand, a six degree of freedom hinge implies that 
there is no coupling between the two clusters as is the case 
for a pair of independent molecules. A bond for which only 

FIG. 1. Illustration of clusters in molecular models and the hinges that 
couple them. 
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changes in the torsional bond angle are permitted is 
modeled as a one degree of freedom rational hinge. On the 
other hand, clusters coupled by a bond whose length alone 
can vary is modeled as a one degree of freedom translational 
(or sliding) hinge. 

As shown in Fig. 1, for each hinge, we assign a coordinate 
reference frame to each of the clusters coupled by the hinge 
and designate them 0 + and 0 -. The motion of the hinge is 
characterized by the motion of these hinge frames with 
respect to each other. For a hinge with m degrees of 
freedom, 0 denotes the vector of m generalized coordinates 
which describe the state of the hinge. In the case of a one 
degree of freedom rotational hinge, 8 is just the value of the 
hinge angle. For a one degree of freedom translation hinge, 
0 is the value of the bond displacement. The time derivative 
vector 8 provides an obvious and common choice for the 
generalized hinge velocity vector a. However, for multipie 
degree of freedom hinges, alternative choices for B-referred 
to as differentials of quasi-coordinates [ 19]-help simplify 
the equations of motion and are often preferable. A case in 
point is a three degree of freedom (ball and socket) rota- 
tional hinge for which the 6 vector may consist of an Euler 
angle or quaternion representation for the hinge orienta- 
tion. For this case, the use of the relative angular velocity in 
place of 8 as the generalized velocity vector simplifies the 
equations of motion. The full unconstrained mobility of the 
base cluster of a molecule is modeled by a six degree of 
freedom hinge between the base cluster and the inertial 
frame. The generalized velocity vector for this hinge is 
simply the six-dimensional spatial velocity vector’ of the 
base cluster. In general, there is always an (invertible) 
kinematic function, 17(e), that maps the hinge velocity /? to 
8 via 8 = Z7(0)/I. For the sake of notational simplicity and 
with no loss in generality, we assume here that B is indeed 
b for all the hinges. 

The six-dimensional relative spatial velocity across a 
hinge can be written in the form H*0, where H* is the 
(6 x m)-dimensional hinge matrix representing the relative 
motion characteristics of the m degrees of freedom hinge. 
Some examples of the structure of the H* matrix are given 

i: 

0 0’ 0 0 
0 0 

i, 

0 0 
1 0 1 0 
0 0 0 0 
0 0 0 0 
0 1 0 1 

Torsional mode alone Stretching mode alone Torsional & stretching modes 

(1 dof) (1 dof) (2 dof) 

below: 

’ The definition of spatial velocities and other spatial quantities is given 
in Appendix A. 

In the above examples, the components of the H matrix 
remain constant in the 0 + and 0 - frames for arbitrary 
hinge motions. This is true even for six degree of freedom 
hinges for whom H* is the 6 x 6 identity matrix. In other 
instances of multiple degree of freedom hinges, the axis of 
motion of a component degree of freedom can depend upon 
the motion of other component degrees of freedom. When 
this is the case, we decompose the hinge degrees of freedom 
into component hinges and separate them by pseudo- 
clusters (clusters with zero mass and zero extent) such that 
the component hinges can be characterized by constant H 
matrices. Thus for the example of a hinge with free bond and 
torsion angle degrees of freedom, we introduce a pseudo- 
cluster so that there is only a one degree of freedom bond 
angle hinge between the inboard cluster and the pseudo- 
cluster, and a one degree of freedom torsional hinge between 
the pseudo-cluster and the outboard cluster. We will assume 
below that this type of a decomposition has been carried out 
throughout the molecular model. 

4. EQUATIONS OF MOTION 

In this section, we describe the equations of motion for 
internal variable models for molecular systems. We make 
extensive use of the spatial operator algebra approach that 
has been used in the past for multibody dynamics applica- 
tions [13, 141. We adopt a Newton-Euler approach since it 
readily reveals the inherent recursive relationships among 
the various dynamical quantities. We use coordinate-free 
spatial notation in our development and a brief overview of 
some of the definitions and notation is described in 
Appendix A. 

At first we restrict our attention to branchless molecular 
models, i.e., models whose structure is in the form of a serial 
chain. Later, we describe the straightforward extensions 
required to handle tree-topology molecular models. In a 
serial chain, each atom cluster has a unique parent and a 
unique child, and this helps simplify the notation. 

We assume that the serial chain contains n clusters and 
that the total number of degrees of freedom in the system 
is JV. One of the extremal clusters is designated the base 
cluster, and the cluster at the other end of the chain is 
referred to as the “tip” cluster. We assign numbers from one 
through n to the clusters in increasing order from the tip to 
the base. The kth hinge in the serial chain couples together 
the (k + 1 )th and kth clusters, and associated with it are 
the pair of hinge frames 0: and 0; shown in Fig. 2. The 
generalized coordinates and the hinge matrix for the kth 
hinge are given by B(k) and H*(k), respectively. The parent 
and child of the kth cluster are the (k+ 1)th and the 
(k - 1)th clusters, respectively. The point denoted CA4 on 
each cluster designates its center of mass. The mobility 
of the base cluster (the nth cluster) is accounted for by 
attaching a six degree of freedom hinge between it and the 
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4 Towards Base Towards Tip - 

FIG. 2. A molecular model consisting of atomic clusters coupled together in a serial chain. 

inertial frame. The index (n + 1) is used for the inertial 
frame. 

The spatial velocity, V(O;), of frame 0, can be com- 
puted recursively as described by the following equation 
(see Eq. (A.3)): 

v(u,)=q5*(0,,, Ok) v(u,,)+H*(k) 8(k). (4.1) 

Here do;+ 17 Coi) is a spatial transformation matrix 
described in Appendix A. We use the notational shorthand 
x(k) to denote a quantity of the form x(0;) in the remain- 
der of this paper. Thus, Eq. (4.1) can be rewritten as 

V(k) = (b*(k + 1, k) V(k + 1) + H*(k) 8(k). (4.2) 

The recursive expression for the spatial acceleration a(k) of 
frame 0; is obtained by taking the time derivative of both 
sides of Eq. (4.2) 

a(k) = p(k) = #*(k + 1, k) a(k + 1) + H*(k) 8(k) + u(k), 

(4.3) 

where the expression for the Coriolis acceleration term u(k) 
is given by 

a(k) = 

(4.4) 

The notation 2 denotes the cross product tensor associated 
with a three-dimensional vector x. Since H(k) is constant in 
the frames 0, and 0:) o( k + 1) can be used in place of 
o(k) in the second term on the right-hand side of Eq. (4.4). 

The gradient of the potential function, PE 
(=S[x] +9[0])), with respect to the generalized coor- 
dinates 8(k) gives the vector of effective generalized forces 
for the kth hinge. These are usually computed for all the 
hinges prior to solving the equations of motion..Due to its 
functional form, the computation of 

(4.5) 

is straightforward. On the other hand, the computation of 
the gradient Ve&‘[x] is more complex and Ref. [lo] 
describes a procedure for its computation. Our algorithm 
avoids the computation of V,(,,B[x]. In its place, we 
make use of the simpler gradient of 9[x] with respect to the 
Cartesian position of the atoms. With xi(k) denoting the 
position of the ith atom of the kth cluster, the gradient, 
fi(k) = V+)P[x], denotes the three-dimensional Car- 
tesian force acting on the atom. The Cartesian forces for all 
the atoms in a cluster are combined together to yield a single 
effective six-dimensional Cartesian spatial force on the 
cluster; If the kth cluster has r(k) atoms, the effective spatial 
force f,(k) on the cluster is given by 

(4.6) 

where I[@ - (k), xi(k)] is the vector from the kth hinge 
frame 0, to the location of the ith atom of the kth cluster. 
We assume that the gradients T(k) and f=(k) have been 
computed and are available for all the clusters and hinges. 

Withy(k) denoting the spatial force of interaction at 0; 
between the (k + 1) th and the k th clusters, and M(k) denot- 
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ing the spatial inertia of the kth cluster about the frame 0;) 
the equations of motion of the kth cluster about 0, are (see 
Eq. (A-5)) 

f(k) = $w, k - 1 )f(k - 1) + M(k) a(k) + b(k) +.m 
(4.7) 

T(k) = fw)f(k); 

b(k) is the spatial gyroscopic force for the kth cluster 
(defined in Eq. (A.6)). The incorporation of the gradients 
T(k) andf,(k) in separate ways into the equations of motion 
in Eq. (4.7) allows us to avoid computing the gradient 
~S(k)~)c~l. 

Putting together Eq. (4.2bEq. (4.7), leads to the 
following Newton-Euler recursive equations of motion for 
the whole system: e 

V(n+ l)=O, a(n+ l)=O 
for k = II . . .‘l 

V(k) = tj*(k + 1, k) V(k + 1) + H*(k) b(k) 
a(k) = 4*(k + 1, k) ct(k + 1) + H*(k) 8(k) + u(k) 

end loop 
(4.8) 

f(0) = 0 
for k = 1 . . . n 

f(k) = 4% k - 1 )f(k - 1) + M(k) u(k) + b(k) + &k) 
T(k) = H(k)f(k) 

end loop 

We now introduce spatial operators and use them to 
express the equations of motion in a more concise form. The 
operators ME %6n x6n and HE !RM x 6n are block diagonal 
matrices defined as M=diag{M(l)...M(n)} and H= 
diag(H(1) . . . H(n)}, while the operator L$ is defined as the 
following lower-triangular matrix: 

0 0 0 0 
1) 0 *** 0 0 

#(3,2) .-a 0 0 
* . 

0 ... d(n,n-1) 0, i * 

Eg6nx6n 

(4.9) 

The zero entries denote (6 x 6)-dimensional zero matrices. 
We use the notation V to denote the 6n-dimensional stacked 
column vector [ V*( 1) . . . I’*(n)]*. Similarly we define the 
vectors 9, u, a, and so on by stacking up the contributions 
from each cluster. Using these newly defined quantities, it is 
easy to see that the recursive equation for V(k) in Eq. (4.8) 
can be collectively rewritten as 

V= 8; V+ H*b. (4.10) 

The inverse of [Z-&b] can be readily shown to be the 
lower-triangular spatial operator 4 given by 

/ z 0 -.o\ 

(j p [Z-&]-l= 4t2; l) f ,-’ ‘? 
1. . I 

EgJ6nx6n 

qs(i 1) & 2) .:: Z (4.L) 

where 

d(i,j) k &i, i- l)...&j+ 1,j) for i >j. 

In Eq. (4.1 l), the zero and Z entries denote (6 x 6)-dimen- 
sional zero and identity matrices respectively. Using 
Eq. (4.11) in Eq. (4.10) leads to the following equation 
for V: 

V= q5*H*& (4.12) 

The special structure of the spatial operators allows high- 
level operator expressions involving them to be directly 
mapped into recursive algorithms, and the explicit com- 
putation of their elements is not required. The corre- 
spondence between operator expressions and recursive 
computations is illustrated by the equivalence of the 
operator expression in Eq. (4.12) and the recursive expres- 
sion for V(k) in Eq. (4.8). 

Continuing along these lines, all the component level 
equations in Eq. (4.8) can be rewritten using operators as 
follows: 

V= #*H*e 

a = r$*(H*8 + a) (4.13) 

f = #(Ma + b +fJ = #Mq+*H*ti + qh(Mq5*a + b +fJ 

T= Hf = HqkCfqb*H*8 + HqS(Md*a + b +fc). 

In particular, the equations of motion have the form 

where 

T=Jz’(O)d+%(O, e), (4.14) 

d!(e) 4 H~M~*H*E%~“~ (4.15a) 

GfZ(e, b) ii Hcj(M4*a + b + jc) E ‘SM. (4.15b) 

Here, A? is the mass matrix of the serial chain and 9? is the 
vector of Coriolis, centrifugal, gyroscopic, and Cartesian 
forces. Note that J# and %? are nonlinear functions of 0 and 
4. The factorization in Eq. (4.15a) of the mass matrix JSG? is 
referred to as the Newton-Euler operator factorization [ 131 
because it is equivalent to the Newton-Euler recursive 
algorithm in Eq. (4.8). 

The solution of the equations of motion in Eq. (4.14) for 
the accelerations vector 8 is required by the integrator to 
propagate the state of the system during MD simulations. 

581/106/Z-5 
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However, Eq. (4.14) represents only a conceptual statement 
of the dynamics problem since .M and % are not explicitly 
available. The conventional approach for computing the 
accelerations 8 consists of first computing both J? and 97 
and then solving the linear matrix equation for the vector & 
In general, d is fully populated and, as a result, the 
computational cost of solving the equations of motion using 
this method grows cubically with the number of degrees of 
freedom in the system; i.e., this is an O(,V3) method. Even 
though an order of magnitude reduction in computational 
times is achieved compared to the conventional Cartesian 
model based methods [lo], the cubic dependency leads to 
large computational costs for large molecules. 

In the next section we describe a recursive algorithm for 
computing the vector of generalized accelerations 8 without 
having to explicitly compute the mass matrix. The com- 
plexity of this method is only O(N); i.e., its computational 
cost grows only linearly with the number of degrees of 
freedom in the model. 

5. RECURSIVE SOLUTION OF 
EQUATIONS OF MOTION 

An operator factorization of the system mass matrix A, 
denoted the innovations operator factorization, is derived in 
this section. This factorization is an alternative to the 
Newton-Euler factorization in Eq. (4.15a) and, in contrast 
with the latter, the factors in the innovations factorization 
are square and invertible. Operator expressions for the 
inverse of these factors are derived and lead to an expression 
for the inverse of the mass matrix. Using further operator 
identities, we obtain an operator expression for the 
generalized accelerations 8. The recursive implementation 
of this expression leads to the O(J) recursive dynamics 
algorithm. Following this, we describe the extensions 
required to handle tree-topology molecular models and the 
computational cost for the algorithm. 

5.1. Operator Expression for the Mass Matrix Inverse 

Given below is a recursive algorithm which defines some 
required quantities such as P(k), D(k), etc. for each of the 
clusters: 

P+(0)=OE9Px6 
for k = 1 . . . n 

P(k)=d(k,k-l)P+(k-1) 
x qb*(k, k - 1) + M(k) 

D(k) = H(k) P(k) H*(k) 
G(k) = P(k) H*(k) D-l(k) 

K(k + 1, k) = 4(k + 1, k) G(k) 
t(k) = I- G(k) H(k) 

P+(k) = t(k) P(k) 
t,b(k+ 1, k) = 4(k + 1, k) f(k) 

end loop 

(5.1) 

This recursive equation for P(k) is a discrete Riccati 
equation and has been extensively studied in control and 
estimation theory [20]. The operator P E ‘3’” x 6n is defined 
as a block diagonal matrix with the kth diagonal element 
being P(k). The quantities defined in Eq. (5.1) form the 
component elements of the following spatial operators: 

D P HPH* = diag{ D(k)} E ‘S2” x N 

G e PH*D-’ = diag(G(k)} E !K6nxN 

K 6 EbG~E6nxJY 

z g I- GH= diag{i(k)} E %6nx6n. 

(5.2) 

The only nonzero block elements of K are the K(k + 1, k) 
elements along the first sub-diagonal. We define the 
operators & and Ic/ as 

/ I 0 . ..o\ 

$ g [Z-&J’= yJ) f 
i. . 

:I’ 0 
-1 

Eg6nx6n 

lj(i, 1) I/&, 2) ..: ; (5.;) 

where 

$(i,j) P Il/(i, i- l)...+(j+ 1,j) for i> j. (5.5) 

The structure of the operators J& and + is identical to that 
of the operators L$ and 4 except that the component 
elements are now t,b(i,j))s rather than d(i,j))s. Also, the 
elements of + have the same semigroup properties 
(Eq. (5.5)) as the elements of the operator 4, and as a conse- 
quence, high-level operator expressions involving them can 
be directly mapped into recursive algorithms. The explicit 
computation of all the elements of the operator $ is not 
required. 

The innovations operator factorization 
matrix is an alternative to the factorization 
and is described by the following lemma. 

LEMMA 5.1. 

of the mass 
in Eq. (4.15a) 

Al = [I+ Hq6K] D[Z+ HdK]*. (5.6) 

Proof: See Appendix B. 1 

Note that the factor [I+ HbK] E !IIMyxM is square, 
block lower triangular, and nonsingular, while D is a block 
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diagonal matrix. This factorization provides a closed form 
operator expression for the block LDL* decomposition of 
1. The following lemma gives the closed form operator 
expression for the inverse of the factor [Z+ Z&J%]. 

LEMMA 5.2. 

[Z+ HqM] -l = [Z- Hlf9K-J. (5.7) 

ProoJ: See Appendix B. 1 

It follows from Lemmas 5.1 and 5.2 that the operator 
expression for the inverse of the mass matrix is given by: 

LEMMA 5.3. 

A’-‘= [Z-H$K]* D-‘[I-H+K]. (5.8) 

Once again, note that the factor [Z- ZZ+K] is square, 
block lower triangular, and nonsingular and so Lemma 5.3 
provides a closed form expression for the block LDL* 
decomposition of 4 - ‘. 

5.2. Recursive Computational Algorithm 

The following lemma describes the operator expression 
for the generalized accelerations 8 in terms of the hinge 
forces T and Cartesian spatial forcesfc. 

LEMMA 5.4. 

8= [Z-H$K]* D-’ 

x[T-H+{KT+Pa+b+f=}]-K*ll/*a. (5.9) 

Proof See Appendix B. 1 

Equation (5.9) can be decomposed into the following 
sequence of expressions: 

z=$[KT+Pa+b+f=] 

s=T-Hz 

v=D-% (5.10) 

a=$[H*v+a] 

8=v-K*a. 

The recursive implementation of Eq. (5.10) leads to the 
following O(J) computational algorithm for the accelera- 
tions, i$ 

z+(o)=0 
for k = 1 . . . n 

z(k)=&k,k-l!z+(k-l)+P(k)a(k) 
+ b(k) + f,(k) 

s(k) = T(k) - H(k) z(k) 
v(k) = D-‘(k) s(k) 

z+(k) = z(k) + G(k) E(k) 
end loop 

(5.11a) 

The dynamics algorithm described above is for molecular 
models with unbranched, serial chain structure. The exten- 
sion of the algorithm to molecular models with general tree- 
topology structure is simple [ 141. In tree-topology models, 
each cluster can have more than one child. Thus, the 
structure of the algorithm now consists of a tips-to-base 
recursion followed by a base-to-tips recursion. The changes 
required in the recursion steps are: 

l During a tips-to-base inward recursion, at each 
cluster, the results from each of the children clusters are 
summed up before proceeding with the recursion. 

a(n+ l)=O 
for k = n . . . 1 

a+(k) = #*(k + 1, k) a(k + 1) 
B(k) = v(k) - G*(k) a+(k) 
a(k) = a+(k) + H*(k) 8(k) + a(k) 

end loop 

(5.11b) 

This algorithm does not require either the explicit computa- 
tion of the mass matrix A, nor the numerical solution of 
the matrix equation Eq. (4.14). The steps in the above 
algorithm can be summarized as follows: 

1. The first step is a recursion from the base to the tip to 
compute the orientation, location, and spatial velocities, 
V(k), and the Coriolis and gyroscopic terms a(k) and b(k) 
for each of the clusters using Eq. (4.2), Eq. (4.4), and 
Eq. (A.6). 

2. Next follows a recursion from the tip towards the 
base as delined by Eq. (5.1) to compute the P(k)?. 

3. The recursion in Eq. (5.11a) from the tip to the 
base is used next to compute the residual forces z(k). This 
recursion can be combined with the tip to base recursion in 
the previous step to obtain a single tip to base recursion 
sequence. 

4. Finally, the base to tip recursion described by 
Eq. (5.11b) computes the 8(k) accelerations for all the 
clusters. 

The computational cost of this algorithm depends only 
linearly on the number of clusters. This is discussed in more 
detail in Section 5.4. The structure of this algorithm closely 
resembles those found in Kalman filtering and smoothing 
theory [15,20]. 

This algorithm has been implemented and tested quite 
extensively for robot and spacecraft dynamics applications. 
It is currently being used for MD simulations and the results 
from the ongoing studies will be reported in a forthcoming 
publication. 

5.3. Extensions to Branched Molecular Structures 
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l During a base-to-tips outward recursion, at each 
cluster, the recursions are continued separately along the 
outgoing children branches. 

Extensions of the algorithm to molecular models with 
closed topology can be carried out using the analysis and 
algorithms described in Ref. [14]. A major step of the 
algorithm for closed-chain models requires solving the 
equations motion of a tree-topology subsystem using 
precisely the algorithm described here. 

5.4. Computational Costs 

As mentioned earlier, the dynamics algorithm in Sec- 
tion 5.2 is of O(M) complexity, i.e., its complexity grows 
only linearly with the number of degrees of freedom. For a 
fixed number of degrees of freedom, .hf, the computational 
cost is maximal for a molecular system with serial chain 
structure, no point mass clusters, and only single degree of 
freedom hinges. For such systems, the computational cost in 
floating point operations is roughly 5OO.N. The presence 
of point-masses, multiple degree of freedom hinges, or 
branches reduces the computational cost. 

Recall that the O(N’) method requires first the computa- 
tion of the mass matrix ~8 and the vector ‘Z, followed by 
the solution of a linear matrix equation of size N. The 
computational cost in floating point operations for such 
O(N3) algorithms is given roughly by the polynomial 
N3/3 + 19X2 + 35OM for a serial chain system with single 
degree of freedom hinges and no point-masses. 

Figure 3 compares the computational cost of the O(N) 
algorithm with the O(Z3) algorithm. The computational 
efficiency of the O(N) algorithm increases rapidly with the 
size of the molecule. Consider the example of a polypeptide 
molecule with each residue regarded as a rigid atomic 

1091 I 
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FIG. 3. Comparison of the computational cost (in floating point 
operations) for the O(N) and 0(N3) algorithms for solving the equations 
of motion. 

cluster. We assume that there are two bending degrees of 
freedom between neighboring clusters. For this molecular 
system, the number of degrees of freedom is approximately 
twice the number of residues. For a polypeptide molecule 
with 400 residues, the cost for the 0(X’) algorithm is 
approximately 450 times larger than that for the O(M) 
algorithm. 

6. CONCLUSIONS 

The use of constrained molecular models allows the use of 
significantly larger integration time steps during molecular 
dynamics simulations when compared with Cartesian 
models. We have studied the use of internal variable 
molecular models to handle inter-atomic constraints, and 
we have developed a fast recursive O(M) algorithm for 
solving the equations of motion for these models. The spa- 
tial operator algebra methods used here were originally 
developed for the analysis and high-speed dynamics simula- 
tion of complex multibody systems such as robots, 
spacecraft, and vehicles. The O(M) algorithm is obtained 
by developing operator expressions for the factorization 
and inversion of the system mass matrix. This leads to 
closed form expressions for the generalized accelerations. 
The algorithm is recursive in nature and consists of sweeps 
from the tips-to-the-base and from the base-to-the-tips of 
the molecular model. 

In contrast with the O(N3) algorithms typically used for 
internal variable models, the O(N) algorithm developed 
here requires neither the computation of the mass matrix 
nor the solution of the linear matrix equation in Eq. (1.1). 
Instead, it directly solves for the accelerations of the system. 
Since it solves the equations of motion exactly, it provides 
improved numerical stability over iterative techniques such 
as the SHAKE algorithm. 

Only gradients of the potential functions with respect to 
the natural coordinates are required by the algorithm. These 
gradients are considerably simpler to compute than the 
more generally used gradients with respect to internal coor- 
dinates. This simplifies the computation of the inter-atomic 
forces. 

Based upon prior work [14] this algorithm extends 
readily and naturally to molecular models with closed 
topologies. This approach also allows changing of con- 
straints during simulations and can be useful for modeling 
events such as the making and breaking of bonds. 

APPENDIX A: SPATIAL NOTATION 

The use of spatial quantities considerably simplifies the 
expressions and analysis of the equations of motion of 
multibody systems (see [21] for more details). The spatial 
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&ocity, V(O), of a coordinate frame is a six-dimensional 
vector defined by combining its three-dimensional angular 
and linear velocity vectors o(0) and u(0). Similarly, the 
spatid force, f(U), is a six-dimensional vector which 
combines the moment and force components N(O) and 
~(0). The specific definitions are 

V(U) P ($;), f(U) k (;;;;). (A.1) 

The spatial acceleration, a(U), of frame Lo is the time 
derivative, v(U), of the spatial velocity vector. We denote 
by I(@., 0,) the three-dimensional vector from the origin of 
frame 0, to the origin of frame 0,. Associated with a pair of 
such frames is also a 6 x 6 spatial transformation matrix 
&U, , 0,) defined as 

(A.2) 

In the above, I3 and O3 denote (3 x 3)-dimensional identity 
and zero matrices, respectively, and. the notation 2 denotes 
the cross-product tensor associated with a three-dimen- 
sional vector x. The transformation matrix #(S, , 0,) trans- 
forms spatial quantities between the two frames 0, and 0, as 

f(C) = 4(&T U,)f(U,), V(qJ = #*(ux, co,> V(eJ. 

(A.3) 

The symbol * denotes the matrix transpose operation. The 
spatial inertia, M(U) of a rigid body about the frame 0 is 
defined as 

(A-4) 

Here m denotes the mass of the body, p the vector from 
frame 0 to the body’s center of mass, and 9(U) is the 3 x 3 
inertia matrix for the body about the reference frame 0. 

With f(U) denoting the effective spatial force on a rigid 
body about frame 0, the equations of motion about the 
frame can be written as 

f(U) = M(U) a(U) + b(U) (~4.5) 

where the gyroscopic spatial force b(k) has the form 

b(U) = %@I 9(U) 4@9 
m&j(U) c%(U) l(U, I?&) > . 

04.6) 

APPENDIX B: PROOFS OF THE LEMMAS 

The proofs of the lemmas in this publication are closely 
parallel those described in Ref. [ 13,211 for rigid multibody 
Systems. 

Proof of Lemma 5.1. It is easy to verify that TPp = TP. 
As a consequence, the recursion for P( .) in Eq. (5.1) can be 
rewritten in the form 

Pre- and post-multiplying the above by C$ and d*, respec- 
tively, then leads to 

Hence, 

A=H&V+*H* =H[P+JP+P$+ +qSKDK*d*] H* 

= D + Hq5KD + DK* I@” H* + HqSKDK* d* H* 

=[I+HQK]D[I+H#K]*. 1 

Proof of Lemma 5.2. Using a standard matrix identity 
we have that 

[I+ Hq5K]-’ =I- H4[I+ KHq5]-’ K. 03.2) 

Note that 

IC/-‘=I-~~=(Z-~~)+C$,GH=~-’ +KH (B.3) 

from which it follows that 

Using this with Eq. (B.2) it follows that 

Proof of Lemma 5.4. From Eq. (4.13) the expression for 
the generalized accelerations 8 is given by 

d=A-‘(~-w)= [I-H$K]* 

x D-ICI- H$K][T- Hq5[Mqb*a + b +fc]]. 03.4) 

From Eq. (B.3) we have that 

[I-H$K]HqS=H$[ti-‘-KH]$=H$. (B.5) 

Thus Eq. (B.4) can be written as 

8= [I- H$K]* D-‘[T- H$[KT+ Md*a + b +fc]]. 

(Jw 

From Eq. (B.l) it follows that 

M= P-&P&$ =N/Mq5*=~P+P~ (B.7) 
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and so Eq. (B.6) simplifies to 

e= [z-H@q* D-‘[T-H~[KT+Pa+b+~]-HPpj*a]. 

(B.8) 

From Eq. (B.3) we have that 

[I- Ht)K]* D-‘HZ@ 

= [I-f#K]* K*g* =K*$* [I,-* -KH]* $* = K*+*. 

(B.9) 

Using this in Eq. (B.8) leads to the result. 1 
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